Curva Fin Bloque

First Milestones Achieved for Hybrid Neural Machine Translation Platform

Pangeanic has reached its first milestone in its project called Hybrid Neural Machine Translation Platform.

This project, with the backing of the CDTI and the EU in its project Operative Growth of Intelligence (case no. IDI-20170964), aims to create a neural machine translation program through the development of hybridization techniques, using AI.

Why neural machine translation?

Neural machine translation systems are currently a hot topic in the scientific community. In the last years, the number of publications is growing on this topic.

These systems have great advantages; the context taken into account when translating is at sentence level (in classic statistical systems a maximum of 7 words were taken into account) and all the components of the system are trained at the same time in order to achieve better translation quality. Also, the stored model for translation occupies less memory and weighs less than the classical statistical systems. Mega-corporations such as Google (Wu et al., 2016) and Microsoft (Hassan et al., 2018) are interested in neural translation and claim that they are beginning to render neural machine translation results similar to human translation.

Hybrid Neural Machine Translation Platform
Mercedes García-Martínez and Alexandre Helle, members of Pangeanic’s Hybrid Neural Machine Translation Platform

The architecture for neural systems is completely new and different from classical statistical translation systems. This means that all existing functionalities in classical statistical machine translation systems have to be re-investigated. The implementation of these functionalities is not obvious and requires further study.

Pangeanic’s stance on its study

Part of the first milestones for Pangeanic’s Hybrid Neural Machine Translation Platform include:

  • The redesigning of pre-processes and post-processes in order for them to operate correctly in neural systems. Previously designed in statistical systems that could work correctly in neural systems.
  • Selecting the appropriate toolkit for the project.
  • Architectural design of the project; a standard model was chosen due to its bidirectional sequence-to-sequence recurrent neural network.

Several toolkits were tested: Nematus, ModernMT, TensorFlow and OpenNMT. OpenNMT is open, has many functionalities, and the documentation is complete enough to be able to easily implement new options. Furthermore, it is supported by Harvard and Systran and a big community is currently using it. Therefore, we decided on OpenNMT due to all those advantages.

After deciding on OpenNMT, the first action taken was experimenting in order to ascertain the best settings, architecture and number of parameters needed for the amount of data that we have.

Future Publications related to Hybrid neural Machine Translation Platform

We are currently reviewing an article that collects the results obtained during the investigation on the impact that tokenization has on the quality of the final translation, which was carried out in the first part of this project.

Additionally, we plan to draft several articles publishing the results of the investigations carried out and to send them to relevant congresses and workshops, which will be held in 2019. Finally, we plan to prepare demonstrations of the system to be developed during the project that will be presented at one of the most important conferences held next year.


Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., Krikun, M., Cao, Y., Gao, Q., Macherey, K., et al. (2016). Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:1609.08144.
Hany Hassan, Anthony Aue, Chang Chen, Vishal Chowdhary, Jonathan Clark, Christian Federmann, Xuedong Huang, Marcin Junczys-Dowmunt, William Lewis, Mu Li, Shujie Liu, Tie-Yan Liu, Renqian Luo, Arul Menezes, Tao Qin, Frank Seide, Xu Ta, Fei Tian, Lijun Wu, Shuangzhi Wu, Yingce Xia, Dongdong Zhang, Zhirui Zhang, Ming Zhou (2018). Achieving Human Parity on Automatic Chinese to English News Translation. arXiv preprint arXiv 1803.05567.

¿Quieres leer esta noticia en castellano? Encuéntrala aquí.

Leave a Reply

Your email address will not be published.

Where we are



Pangeanic Headquarters

Av. Cortes Valencianas, 26-5,

Ofi 107

46015 Valencia (Spain)

(+34) 917 94 45 64 / (+34) 96 333 63 33
[email protected]


Flat8, 279 Church Road,
Crystal Palace
SE19 2QQ
United Kingdom
+44 203 5400 256

[email protected]


Castellana 91
Madrid 28046
(+34) 91 326 29 33
[email protected]



One Boston Place
Suite 2600
Boston MA 02108
(617) 621-4084
[email protected]

New York

228 E 45TH St Rm 9E
10017-3337 New York, NY

[email protected]  


Hong Kong

21st Floor, CMA Building
64 Connaught Road Central
Hong Kong
Toll Free: +852 2157 3950
[email protected]


Ogawa Building 3F

3-37 Kanda Sakuma-cho

Chiyoda-ku, Tokyo


[email protected]


Tomson Commercial Building,
Room 316-317
710 Dong Fang Road
Pu Dong, Shanghai 200122, China

[email protected]